TOP FEATURES - 5-speeds: 800GE, 400GE, 200GE, 100GE & 50GE - Dual media: QSFP-DD800 8 QSFP112 - Supports 112G SerDes (PAM4 112G) & 56G SerDes (PAM4) - Test with optics and DAC's - Auto-Negotiation & Link Training (AN/LT) - Advanced Signal Integrity View - Price/performance - Ease of use #### XENA VALUE PACK Included with every Freya-800G-4S-1P: - User-friendly software (ValkyrieManager ValkyrieCLl, Valkyrie2544, Valkyrie2889, Valkyrie3918, Valkyrie1564) - Test automation with XOA - Three years software updates - Three years hardware warranty - Free tech support & training for the product lifetime # VIEW THE PRODUCT ON OUR WEBSITE: SCAN \longrightarrow OR <u>CLICK ON</u> THIS LINK ## Freya-800G-4S-1P 5-speed 800g (112gbps serdes) dual-media Test module This flexibility is provided via two physical transceiver cages – one supporting QSFP-DD800 compatible transceivers, and the other supporting QSFP112 compatible transceivers. Freya is a highly versatile solution designed for performance and functional testing of Ethernet network infrastructure and equipment including switches, routers and NICs. Freya is unique on the market with its ability to test up to 800GE with 112G SERDES (PAM4 112G) meeting the highest demands for superior signal integrity and bit error rate performance. Freya supports extensive L1 test features for advanced PCS and PMA layer testing including dynamic transceiver clock sweep, lane skewing and PRBS modes. Signals can be analyzed in advanced signal integrity view, which provides visual information on the quality of the signal. The Freya-800G-4S-1P test module supports Auto-Negotiation and Link Training (AN/LT) on 112G SerDes and 56G SerDes. Freya-800G-4S-1P modules can be installed in ValkyrieBay for multi-module setup, or delivered in the ValkyrieCompact chassis, making it the most compact and lightweight 800G Ethernet test solution in the market. With ValkyrieManager users have access to an intuitive user-friendly multi-user management software where they can generate and analyze traffic. Xena OpenAutomation (XOA) enable customers to make the most of Xena testers with tailored tests as well as standardized test methodologies, to achieve accelerated release cycles, enhanced test reliability, and boosted customer satisfaction. #### **Ethernet Auto-Negotiation & Link Training Test Tools** Freya customers can purchase Freya-ANLT license for enabling AN/LT Utility on Freya-800G-4S-1P and Freya-800G-4S-1P-OSFP modules. This license enables additional AN/LT tools for thorough testing of the endpoint behaviour during AN and LT process. The AN/LT Utility provides insight, visibility, and configuration possibilities to the AN and LT process making it easy to analyze DUT behaviour during AN/LT, configure and optimize the relevant AN parameters and LT coefficients. | PORT LEVEL FEATURES | | | |--|--|--| | Interface category | QSFP-DD800 • 800G, 400G, 200G, 100G, 50G Ethernet
QSFP112 • 400G, 200G, 100G, 50G Ethernet | | | Total number of test ports (software configurable) | 1x800G, 2x400G, 4x200G, 8x100G or 8x50G Ethernet | | | Interface options | QSFP-DD800 cage 112G SerDes: • 1 x 800GE | | | | 56G Serdes: 1 x 400GE PAM4 802.3bs or 2 x 200GE PAM4 802.3cd or 4 x 100GE PAM4 802.3cd or 8 x 50GE PAM4 802.3cd | | | | QSFP112 cage 112G SerDes: | | | | 4 x 100GE PAM4 802.3cd or 8 x 50GE PAM4 802.3cd Both cages must run with the same interface configuration (e.g. 4 x 100G) and same SerDes speed (e.g 112G) *ETC = Ethernet Technology Consortium | | | Auto Negotiation and Link Training | Auto-negotiation: IEEE 802.3 Clause 73 and ETH. 400G/800G specifications | | | Forward Error Correction (FEC) | Link training: IEEE 802.3 Clause 136 and 161 RS-FEC (ReedSolomon) (544,514,t=15), IEEE802.3 Clause 119 RS-FEC (ReedSolomon) (544,514,t=15), IEEE802.3 Clause 134 | | | Number of transceiver module cages | 1 x QSFP-DD800 and 1 x QSFP112 | | | Port statistics | Link state, FCS errors, pauseframes, ARP/PING, error injections, training packet
All traffic: RX and TX Mbit/s, packets/s, packets, bytes
Traffic w/o test payload: RX and TX Mbit/s, packets/s, packets, bytes | | | Adjustable Inter FrameGap (IFG) | Configurable from 16 to 56 bytes, defaultis 20B (12BIFG + 8B preamble) | | | Transmit line rate adjustment | Ability to adjust the effective line rate by forcing idle gaps equivalent to -1000 ppm (increments of 10 ppm) | | | Transmit line clock adjustment | From -400 to 400 ppm in steps of 1 ppm (shared across all ports) | | | PPM Sweep | Configurable linear or step sweep +/- 400 ppm | | | ARP/PING | Supported (configurable IP and MAC address per port) | | | Field upgradeable | System is fully field upgradeable to product releases (FPGA images and software) | | | Tx disable | Enable/disable of optical laser or copperlink | | | Field upgradeable | System is fully field upgradeable to product releases (FPGA images and software) | | | IGMPv2 multicast join/leave | IGMPv2 continuous multicast join, with configurable repeat interval | | | Histogram statistics | Two real-time histograms per port. Each histogram can measure one of RX/TX packet length, IFG, or Latency distribution for all traffic, a specific stream, or a filter | | | Loopback modes | L1RX2TX – RX-to-TX, transmit byte-by-byte copy of the incoming packet TXON2RX – TX-to-RX, packet is also transmitted from the port TXOFF2RX – TX-to-RX, port's transmitter is idle | | | Oscillator characteristics | Initial Accuracy is 3 ppm Frequency driftover 1st year:+/- 3 ppm (over 15 years: +/- 15 ppm) Temperature Stability: +/- 20 ppm (Total Stability is +/- 35 ppm) | | | PCS/PMA LAYERS TESTING | | |--------------------------------|--| | Payload Test pattern | PRBS-13 & PRBS-31 | | Alarms | PRBS pattern loss, link sync loss | | Error analysis | Bit-errors: seconds, count, rate | | PCS virtual lane configuration | User-defined skew insertion per Tx virtual lane, and user-defined virtual lane-to-
SerDes mapping for testing of the Rx PCS virtual lane reorder function | | PCS virtual lane statistics | Relative virtual lane skew measurements (up to 2048 bits)
Corrected Bit error, Pre-FEC BER | | FEC Total statistics | Total corrected FEC symbols, Total uncorrected FEC symbols, Estimated Pre-FEC BER,
Estimated Post-FEC BER, Pre-FEC Error Distribution Graph | | Link Flap | Single shot or repeatable link-down events with ms precision | | Error Injection (PMA Layer) | Repeatable error injectperiods at PMA layer with ms precision | ### **PHY/TRANSCEIVER ETHERNET TESTING** - Supported in ANLT mode - Single stream Ethernet frames with FCS Traffic load: up to 100% Configurable Frame Size distribution and content Transmit and Receive Statistics | ADVANCED PHY FEATURES | | |---------------------------|---| | Equalization Controls | Tx Transmit Equalization Controls • Pre-emphasis • Attenuation • Post-emphasis | | | Rx Recive Equalization Controls Continuous Time Linear Equalizer | | Signal Integrity Analysis | Advanced signal integrity view | | TRANSMIT ENGINES | | |-------------------------------------|--| | Number of transmit streams per port | 256 (wire-speed)
Each stream can generate millions of traffic flows using field modifiers | | Test payload insertion per stream | Wire-speed packet generation with timestamps, sequence numbers, and data integrity signature optionally inserted into each packet. | | Stream statistics | TX Mbit/s, packets/s, packets, bytes, FCS error | | Bandwidth profiles | Burst size and density can be specified. Uniform and bursty bandwidth profile streams can be interleaved | | Field modifiers | 24-bit header field modifiers with incremental, decremental, or random mode. Each
modifier
has configurable bit- mask, repetition, min, max, and step parameters. Eight 24-bit
modifiers can be configured per stream | | Packet length controls | Fixed, random, butterfly, and incrementing packet length distributions from 56 to 12288 bytes | | Packet payloads (basic) | Repeated userspecified 1 to 18B pattern, an 8-bit incrementing pattern | | Error generation | Undersize length (56 bytes min) and oversize length (12288 bytes max.) packet lengths, injection of sequence, misorder, payload integrity, and FCS errors | | TRANSMIT ENGINES | | |--|--| | TX packet header support and RX auto decodes | Ethernet, Ethernet II, VLAN, ARP, IPv4, IPv6, UDP, TCP, LLC, SNAP, GTP, ICMP, RTP, RTCP, STP, MPLS, PBB, or fully specified by user | | Packet scheduling modes | Normal (stream interleaved mode) – standard scheduling mode, precise rates, minor variation in packet inter-frame gap. Strict Uniform – new scheduling mode, with 100% uniform packet inter-frame gap, minor deviation from configured rates. Sequential packet scheduling (sequential stream scheduling). Streams are scheduled continuously in sequential order, with configurable number of packets per stream. Burst. Packets in a stream are organized in bursts. Bursts from active streams form a burst group. The user specifies time from start of one burst group till start of next burst group.ifiers | | RECEIVE ENGINE | | |--|--| | Number of traceable Rx streams per port | 2016 (wire-speed) | | Automatic detection of test payload for received packets | Real-time reporting of statistics and latency, loss, payload integrity, sequence error, and misorder error checking | | Jitter measurement | Jitter (Packet Delay Variation) measurements compliant to MEF10 standard with 8ns accuracy
Jitter can be measured on up to 32 streams | | Stream statistics | RX Mbit/s, packets/s, packets, bytes. Loss, payload integrity errors, sequence errors ,misorder errors Min latency, max latency, average latency Min jitter, max jitter, average jitter | | Latency measurements accuracy | ±32ns | | Latency measurement resolution | 8ns (Latency measurements can calibrate and remove latency from transceiver modules) | | Number of filters: | 6 x 64-bit user-definable match-term patterns with mask, and offset 6 x frame length comparator terms (longer, shorter) 6 x user-defined filters expressed from AND/OR'ing of the match and length terms | | Filter statistics | Per filter: RX Mbit/s, packets/s, packets, bytes | | CAPTURE | | |---|--| | Capture criteria | All traffic, stream, FCS errors, filtermatch, or traffic without test payloads | | Capture limit per packet | 16 – 12288 bytes | | Wire-speed capture buffer per port | 64kB | | Low speed capture buffer per port
(10Mbit/s speed) | 4096 packets (anysize) | | HW SPECIFICATIONS | | |----------------------|--| | Max. Power | Power capacity using single cage: QSFP-DD800: 25W or QSFP112: 15W Power capacity using both cages: QSFP-DD800: 15W + QSFP112: 15W | | Weight | • 2.32 lbs (1.05 kg) | | Environmental | Operating Temperature: 10 to 35° C Storage Temperature: -40 to 70° C Humidity: 8% to 90% non-condensing | | Regulatory | FCC (US),CE (Europe) | | Connector insertions | Xena uses high-quality 112Gbps-capable electrical connectors on Freya modules for optimal signal integrity and performance. However, all connectors experience wear when inserted, resulting in decreased signal integrity over time. The specification below is the minimum number of insertions where optimal signal integrity is guaranteed: • Connector for QSFPDD: Minimum number of guaranteed insertions: 500 cycles • Connector for QSFP112: Minimum number of guaranteed insertions: 500 cycles | | Notes | This module is only supported by the Val-C12-2400 and the ValkyrieCompact chassis This module requires two slots in the Val-C12-2400 chassis | - PRODUCT NUMBER (P/N) Freya-800G-4S-1P test module for ValkyrieBay chassis C-Freya-800G-4S-1P mounted in ValkyrieCompact chassis Freya-ANLT ANLT perpetual license for enabling ANLT Utility on Freya-800G-4S-1P modules #### TOP FEATURES - 5-speeds: 800GE, 400GE, 200GE, 100GE & 50GE - OSFP cage - Supports 112G SerDes (PAM4 112G) & 56G SerDes (PAM4) - Test with optics and DACs - Auto-Negotiation & Link Training (AN/LT) - Advanced signal integrity view - Price/performance - Ease of use #### XENA VALUE PACK Included with Freya-800G-4S-1P-OSFP: - User-friendly software (ValkyrieManager ValkyrieCLI, Valkyrie2544, Valkyrie2889, Valkyrie3918, Valkyrie1564) - Test automation with XOA - Three vears' software updates - Three years' hardware warranty - Free tech support & training for the product lifetime # VIEW THE PRODUCT ON OUR WEBSITE: SCAN OR CLICK ON THIS LINK ## Freya-800G-4S-1P-0SFP 5-speed 800G (112gbps serdes) The module supports OSFP-compatible transceivers. Freya is a highly versatile solution designed for performance and functional testing of Ethernet network infrastructure and equipment including switches, routers and NICs. Freya is unique on the market with its ability to test up to 800GE with 112G SERDES (PAM4 112G) meeting the highest demands for superior signal integrity and bit error rate performance. Freya supports extensive L1 test features for advanced PCS and PMA layer testing including dynamic transceiver clock sweep, lane skewing and PRBS modes. Signals can be analyzed in advanced signal integrity view, which provides visual information on the quality of the signal. The Freya-800G-4S-1P-OSFP test module supports Auto-Negotiation and Link Training (AN/LT) on 112G SerDes and 56G SerDes. Freya-800G-4S-1P-OSFP modules can be installed in ValkyrieBay for multi-module setup, or delivered in the ValkyrieCompact chassis, making it the most compact and lightweight 800G Ethernet test solution in the market. With ValkyrieManager users have access to an intuitive user-friendly multi-user management software where they can generate and analyze traffic. Xena OpenAutomation (XOA) enable customers to make the most of Xena testers with tailored tests as well as standardized test methodologies to achieve accelerated release cycles, enhanced test reliability, and boosted customer satisfaction. #### **Ethernet Auto-Negotiation & Link Training Test Tools** Freya customers can purchase Freya-ANLT license for enabling AN/LT Utility on Freya-800G-4S-1P and Freya-800G-4S-1P-OSFP modules. This license enables additional AN/LT tools for thorough testing of the endpoint behaviour during AN and LT process. The AN/LT Utility provides insight, visibility, and configuration possibilities to the AN and LT process making it easy to analyze DUT behaviour during AN/LT, configure and optimize the relevant AN parameters and LT coefficients. | PORT LEVEL FEATURES | | | |--|--|--| | Interface category | OSFP • 800G, 400G, 200G, 100G, 50G Ethernet | | | Total number of test ports (software configurable) | 1x800G, 2x400G, 4x200G, 8x100G and 50G Ethernet | | | Interface options | OSFP cage 112G SerDes: • 1 x 800GE PAM4 802.3df (D2.0) / ETC* or • 2 or 1 x 400GE PAM4 802.3ck or • 4 or 2 x 200GE PAM4 802.3ck or • 8 or 4 x 100GE PAM4 802.3ck | | | | 56G Serdes: • 1 x 400GE PAM4 802.3bs or • 2 x 200GE PAM4 802.3cd or • 4 x 100GE PAM4 802.3cd or • 8 x 50GE PAM4 802.3cd | | | | Power capacity: 20W (ValkyrieBay) / 25W (ValkyrieCompact) | | | | *ETC = Ethernet Technology Consortium | | | Auto Negotiation and Link Training | Auto-negotiation: IEEE 802.3 Clause 73 and ETH. 400G/800G specifications Link training: IEEE 802.3 Clause 136 and 161 | | | Forward Error Correction (FEC) | RS-FEC (Reed-Solomon) (544,514,t=15), IEEE802.3 Clause 119
RS-FEC (Reed-Solomon) (544,514,t=15), IEEE802.3 Clause 134 | | | Number of transceiver module cages | 1 x OSFP | | | Port statistics | Link state, FCS errors, pauseframes, ARP/PING, error injections, training packet
All traffic: RX and TX Mbit/s, packets/s, packets, bytes
Traffic w/o test payload: RX and TX Mbit/s, packets/s, packets, bytes | | | Adjustable Inter Frame Gap (IFG) | Configurable from 16 to 56 bytes, defaultis 20B (12BIFG + 8B preamble) | | | Transmit line rate adjustment | Ability to adjust the effective line rate by forcing idle gaps equivalent to -1000 ppm (increments of 10 ppm) | | | Transmit line clock adjustment | From -400 to 400 ppm in steps of 1 ppm (shared across all ports) | | | PPM Sweep | Configurable linear or step sweep +/- 400 ppm | | | ARP/PING | Supported (configurable IP and MAC address per port) | | | Field upgradeable | System is fully field upgradeable to product releases (FPGA images and software) | | | Tx disable | Enable/disable of optical laser or copper link | | | Field upgradeable | System is fully field upgradeable to product releases (FPGA images and software) | | | IGMPv2 multicast join/leave | IGMPv2 continuous multicast join, with configurable repeat interval | | | Histogram statistics | Two real-time histograms per port. Each histogram can measure one of RX/TX packet
length, IFG, or Latency distribution for all traffic, a specific stream, or a filter | | | Loopback modes | L1RX2TX – RX-to-TX, transmit byte-by-byte copy of the incoming packet TXON2RX – TX-to-RX, packet is also transmitted from the port TXOFF2RX – TX-to-RX, port's transmitter is idle | | | Oscillator characteristics | Initial Accuracy is 3 ppm Frequency driftover 1st year:+/- 3 ppm (over 15 years: +/- 15 ppm) Temperature Stability: +/- 20 ppm (Total Stability is +/- 35 ppm) | | | PCS/PMA LAYERS TESTING | | |--------------------------------|---| | Payload Test pattern | PRBS-13 & PRBS-31 | | Alarms | PRBS pattern loss, link sync loss | | Error analysis | Bit-errors: seconds, count, rate | | PCS virtual lane configuration | User-defined skew insertion per Tx virtual lane, and user defined virtual lane to SerDes mapping for testing of the Rx PCS virtual lane re-order function | | PCS virtual lane statistics | Relative virtual lane skew measurements (up to 2048 bits)
Corrected Bit error, Pre-FEC BER | | FEC Total statistics | Total corrected FEC symbols, Total uncorrected FEC symbols, Estimated Pre-FEC BER, Estimated Post-FEC BER, Pre-FEC Error Distribution Graph | | Link Flap | Single short or repeatable link down events with ms precision | | Error Injection (PMA Layer) | Repeatable error inject periods at PMA layer with ms precision | ### **PHY/TRANSCEIVER ETHERNET TESTING** | Programmable | Pattern | Generator | |------------------|----------|--------------| | 1 TOSTATTITIADIC | 1 attern | UCITICI ator | - Supported in ANLT mode Ethernet frames with FCS Traffic load: up to 100% Configurable Frame Size distribution and content Transmit and Receive Statistics | ADVANCED PHY FEATURES | | |---------------------------|--| | Equalization Controls | Tx Transmit Equalization Controls Pre-emphasis Attenuation Post-emphasis | | | Rx Receive Equalization Controls • Continuous Time Linear Equalizer | | Signal Integrity Analysis | FEC error correction chartAdvanced signal integrity view | | TRANSMIT ENGINES | | |-------------------------------------|--| | Number of transmit streams per port | 256 (wire-speed)
Each stream can generate millions of traffic flows using field modifiers | | Test payload insertion per stream | Wire-speed packet generation with time stamps, sequence numbers, and data integrity signature optionally inserted into each packet. | | Stream statistics | TX Mbit/s, packets/s, packets, bytes, FCS error | | Bandwidth profiles | Burst size and density can be specified. Uniform and bursty bandwidth profile streams can be interleaved | | Field modifiers | 24-bit header field modifiers with incremental, decremental, or random mode. Each modifier has configurable bit-mask, repetition, min, max, and step parameters. Eight 24-bit modifiers can be configured per stream | | Packet length controls | Fixed, random, butterfly, and incrementing packet length distributions from 56 to 12288 bytes | | Packet payloads (basic) | Repeated user specified 1 to 18B pattern, an 8-bit incrementing pattern | | Error generation | Undersize length (56 bytes min) and oversize length (12288 bytes max.) packet lengths, injection of sequence, misorder, payload integrity, and FCS errors | | TRANSMIT ENGINES | | |--|---| | TX packet header support and RX auto decodes | Ethernet, Ethernet II, VLAN, ARP, IPv4, IPv6, UDP, TCP, LLC, SNAP, GTP, ICMP, RTP, RTCP, STP, MPLS, PBB, or fully specified by user | | Packet scheduling modes | Normal (stream interleaved mode) – standard scheduling mode, precise rates, minor variation in packet inter-frame gap. Strict Uniform – new scheduling mode, with 100% uniform packet inter-frame gap, minor deviation from configured rates. Sequential packet scheduling (sequential stream scheduling). Streams are scheduled continuously in sequential order, with configurable number of packets per stream. Burst Packets in a stream are organized in bursts. Bursts from active streams form a burst group. The user specifies time from start of one burst group till start of next burst group. | | RECEIVE ENGINE | | |--|--| | Number of traceable Rx streams per port | 2016 (wire-speed) | | Automatic detection of test payload for received packets | Real-time reporting of statistics and latency, loss, payload integrity, sequence error, and misorder error checking | | Jitter measurement | Jitter (Packet Delay Variation) measurements compliant to MEF10 standard with 8ns accuracy
Jitter can be measured on up to 32 streams | | Stream statistics | RX Mbit/s, packets/s, packets, bytes. Loss, payload integrity errors, sequence errors, misorder errors Min latency, max latency, average latency Min jitter, max jitter, average jitter | | Latency measurements accuracy | ±32ns | | Latency measurement resolution | 8ns (Latency measurements can calibrate and remove latency from transceiver modules) | | Number of filters: | 6 x 64-bit user-definable match-term patterns with mask, and offset 6 x frame length comparator terms (longer, shorter) 6 x user-defined filters expressed from AND/OR'ing of the match and length terms | | Filter statistics | Per filter: RX Mbit/s, packets/s, packets, bytes | | CAPTURE | | |---|--| | Capture criteria | All traffic, stream, FCS errors, filtermatch, or traffic without test payloads | | Capture limit per packet | 16 – 12288 bytes | | Wire-speed capture buffer per port | 64 kB | | Low speed capture buffer per port
(10Mbit/s speed) | 4096 packets (anysize) | | HW SPECIFICATIONS | | |----------------------|--| | Max. Power | • TBA W | | Weight | • 2.32 lbs (1.05 kg) | | Environmental | Operating Temperature: 10 to 35° C Storage Temperature: -40 to 70° C Humidity: 8% to 90% non-condensing | | Regulatory | FCC (US),CE (Europe) | | Connector insertions | Xena uses high-quality 112Gbps-capable electrical connectors on Freya modules for optimal signal integrity and performance. However, all connectors experience wear when inserted, resulting in decreased signal integrity over time. The specification below is the minimum number of insertions where optimal signal integrity is guaranteed: • Connector for OSFP: Minimum number of guaranteed insertions: 500 cycles | | Notes | This module is only supported by the Val-C12-2400 and the ValkyrieCompact chassis This module requires two slots in the Val-C12-2400 chassis | - PRODUCT NUMBER (P/N) Freya-800G-4S-1P-OSFP test module for ValkyrieBay chassis C-Freya-800G-4S-1P-OSFP mounted in ValkyrieCompact chassis Freya-ANLT ANLT perpetual license for enabling ANLT Utility on Freya-800G-4S-1P-OSFP modules